] Technology Update ‘

Salted Hashing of Passwords

During the course of
Penetration testing of Web
Applications at Cyber
Security Division, NIC,
several security
vulnerabilities are identified.
One of these vulnerabilities
includes the finding that the
credentials traveling in clear
text can be sniffed from the
network. The credentials can
also be detected with the help
of memory editing tools on
shared systems which are
used to access the
authentication web pages.
Considering the common
nature of these problems and
their solutions, throwing light
on the underlying concepts is
a must read for those
targeting the problem while
developing secure code in an
effective manner. The
following section sheds light
on the solution to the
problem.

WhatisaHash?

Hash algorithms map binary values of
an input of arbitrary length to a binary
value of a fixed length, known as hash
values. A hash value is a unique and
extremely compact numerical
representation of a piece of data. If
you hash a paragraph of plaintext and
change even one letter of the
paragraph, then a subsequent hash
will produce a different value. It is
computationally improbable to find
two distinct inputs that hash to the
same value. A hash value is also
known as a Message digest. MDS5,

Informatics, July 2009

SHAI etc. are Hash Algorithms. The
following sections illustrate salted
hashing with respect to MDS5
algorithm. Other hash algorithms
such as SHA-1 may be used
alternately.

About MD5

MDS5 algorithm takes as input a
message of arbitrary length and
produces as output a 128-bit
"fingerprint" or "message digest" of
the input. ASHA1 algorithm produces
a 160 bit length hash of the input.

A Sample Test Message

| MDS Algorithm |

ToaThris3as4c02a406roc 130105012

- | ‘Message Digest or Hasn value

Application of MD5 to protect
passwords

® Problem: When a site visitor
submits his/her credentials on a login
page it is submitted in clear text and
this can be obtained by malicious
users from a browser of a user even

though he/she may have logged out.

But to make it possible, the hacker
must have access to the user's system,
which may be possible in the case of
shared system in kiosks etc. Also,
another precondition to this is that the
browser must have not been closed.

credentials from an
provided authentication credentials.

The following screen dump shows a memory editing tool used to view the
instance of the browser from which the user had

o I et 01 £ 3 4 5 & 7 8@ 9 4 B C D E F

DOLB4A960 | 41 42 67 41 47 41 41 41 4L 94 67 41 AF 41 45 34 ABgBIAMMADGADAE
O01B497T0 41 41 41 41 55 41 42 51 4L 56 41 41 41 41 41 413 AAAATTRECURNARA AL
DO1B4FE0 41 41 41 43 67 41 41 41 41 42 59 4B 4% EF &7 5 AMACgAAMABYHIog
DOLBAP90 40 TA EF 34 41 41 41 41 50 62 &7 42 O 41 47 4D CzgihAMFLEpAGY
OOLBATAD 41 62 E7 42 TO 41 47 4D AL 4D 77 41 77 41 44 67 AbgBpAGHAHwAwADY
DOLB4S9B0 41 AE 67 42 44 A1 46 4D 41 52 77 42 51 41 45 55 ANgBEDAFMAR+EOAET
00LBLS9CO 41 54 E7 42 B5 41 45 S5 4l 56 7T 42 S5 41 43 4D ATgBUAEUAUwBIACY
001 B49D0 6E S8 58 33 64 46 48 4D 36 41 41 41 41 41 41 41 sXKIjFHHGALARALS
OO01B49ED 41 431 41 431 41 41 43 41 41 41 41 81 41 41 45 73 AAAAALALAAAALAES
001LB4YFD 1€ AE E1 47 2B 4F &6 &7 G4 44 5S4 37 4D 31 B] 45 | SHOGHOELTIZTHI1IS)
O0LB4AOD 65 &% 77 69 69 2B 18 &1 &% F6 79 33 66 64 TO ID eivii+Baiwy3Ildp
001BaALD 1D D DA 43 &F &F 6B &9 &5 34 20 50 48 50 53 45 = Caslkia FPHPSE

JOIR4A 2T 1 53 49 44 D 63 £ I IO 31 ¥} IF 0 65 &2 33 SSID=ccHDLIGD=b

001B4420 36 33 &6 B1 &6 &5 32 A0 &5 30D I 64 36 J1 &1 ES | EIE LT
D01B4A4D €4 78 32 3E 29 3B 20 €3 7D E4 3D 31 35 DD DA D?ﬂm
001B4ASD Ok 73 4 &1 74 75 73 3D 632 BB &5 £ 6B 26 TS 73 atatus=checki

00LB4AB0 &5 72 EE 61 6D 65 3D 64 &5 6C 68 69 26 70 &1 73 ernans~dalhilipa

OOLBAATOD (71 77 &F 77 6d 31D &4 &5 &C BF &9 26 53 75 &2 6D svord=dslhiiSu
001B4ABD &9 74 3D AC &F 647 6% GE 05 0D 70 0D 57 D1 08 DD =login D,
001B4A%0 00 DO 0O OO EC DD 03 OO0 78 45 1E 00 %8 B2 1a 0O o .
001B4AAD 00 OO 0D OO0 OO OO0 00 @O0 OO DD @O0 00 0D OO @O0 0O .

Snigdha Acharya
Technical Director
snigdha.acharya@nic.in

-

July 2009 | informatics.nic.in

Similarly, this can be illustrated with the help of Network
sniffing tools when credentials are traveling in clear text.

® Solution: The problem outlined above can be solved
with hashing. A hash of the password can be sent from the
client browser to the server application. It is not possible to
extract the clear text password from the network or from
the browser memory as only the hashed form of the
password can be obtained.

Threat of Hash Replay

However, a hashed password submitted from the client
can be sniffed while in transit from the network or
obtained from a shared system used to browse the web site
with the help of tools. This hashed password can then be
replayed or pasted while submitting to the server and
access gained as seen from tests in the lab.

Solution:Salted Hashed Password

Salted MD5 hash of the password can be submitted to
avoid the replay attack. In this case the password will vary
every time the salted MD5 password is submitted to the
server. Since the salt is a random number and changes
every time, the salted hashed password also changes every
time.

The pre-requisite to this is that the backend database stores
a hash of the password. When a client requests for the
login page, the server generates a random number or the
salt, and sends it to the client along with the page. A
JavaScript code on the client computes the MDS5 hash of

(1) _Fequestfor & prolected Resource

03 Salt + Login Page

-
e o et eraees
— b rname and Liar Hame
@ Premers s

PR DS bl { Sl & |
WOSraah {Passsond)

Hashed Paisword N |
reprisentation
1. HPA — comnpused an Te Senk

2. HPR = compied an Sarvee On Sarver

@ B
[FFB-MEiaan (5 « Faraned Passmra iﬁ(]

Emtathahad Iat the usss hikds
the passwond whose saked hash
[5ent from the clianl) masches
I ool conpubet on e seever

Step by step illustration of the salted MD5

Technology Update

the password entered by the user. It then concatenates the
salt to the hash and re-computes the MDS5 hash. This result
is then sent to the server. The server picks the hash of the
password from its database, concatenates the salt and
computes the MD5 hash. If the user entered the correct
password, these two hashes should match. The server
compares the two and if they match, the user is
authenticated. This session persists or is valid till the user
logs out or the session times out due to inactivity.

Verification of a salted hash implementation in an
application

J— —D| An furihentication pags |

B4 BS 78 TE 420 aQLtRgE IR Teut B Sated hash ol passwodd 35 seon
GE 64 EF 76 I0 | oxlemic. Beacdci® withifia halp of a memory edeng
75 74 74 BF 6F | ssswordlelBurioe tool 2t fima T1

68710 31 31 33| peToginihaskelTT

35 38 34 36 &d || DEGOeL0a?013B464
11 2% 00 00 @0 | Scdiidlnlfdid

KT W I0 T NE A S0 RibopddatREeiTE]
BE % §3 IE 7T 43 6l €F sxtBowlenic scan

BF 7E 0l 38 30 26 0 T doklysword] Al Safted hash of same password at &
ET % GE 26 6B Al T3 80 comleleglakhash | l6b4i tme T2

T AR 20T AT WM M LRI AT

11 &6 TE 33 3% &L &L 3| MeelSLI1I0 kAl

fCdD AR ae D8 LFBa 2.0] B

It can be seen from the above sample snapshots of an
application with salted hash implementation in the
authentication module, the salted hash passwords are
different at the two instances of authentication and hence
cannot be used in replay attacks.

Effective implementation of the above steps in the code
logic is an adequate defense against the credentials
leakage problem encountered in web applications
accessed from shared client systems used for browsing
authenticated sessions as well as from the network.

For further information, contact:
Snigdha Acharya
Technical Director

Cyber Security Division
snigdha.acharya@nic.in

